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Abstract

[w+) phase' _hJws can tie. foilmt ill hro/llt _,itliltcion$ in llittllrP, biolo_.v. <till[ indlistQ" ,levices

itn(t can involvP <tivers_, imd complex [nechanisillS. Whib 3 the physical :nod_'ls may be specific
t't,[" ,',Tr;/irl -ir_lilril)llS. rift' ellltrh#,ill;lli¢;I.l t'lq:!',l{l;tl_ii:t: m,! rilllllt'l'iCilL ":,',l['il!.l'Ii[ [tJr ._o['¢iil_ the

gl)verning equar.ions can be general. Based ,)n the co[lr.iniiilm mechanics, we _tl;tll Ir_';tt the fluid

;I._, ;t lliiXrllr_ +'resisting ,)f two nteracrin_ phas,,s or .mat.rials) ,3c ":._;:::;g :h ' .same region ill

_pace at an)" given moment. Hence, we will require information concerning each individual phase

needed in a single phase, but also the interactions between them. These interaction terms,

however, pose additional numerical challenges because they are beyond the basis that we use to
construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to

disparate differences in time scales, fluid compressibility and nonlinearity become acute, further

complicating the numerical procedures. In this paper: we will show the ideas and procedure

how the AUSM-family schemes are extended for solving two phase flows problems. Specifically,

both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in

phase interactions are extremely short in comparison with those in fluid speeds and pressure
fluctuations. Details of the numerical formulation and issues involved are discussed and the

effectiveness of the method are demonstrated for several industrial examples.

1 Extension to Real Fluids and Flows with Equilibrium

Phase Change

Prior efforts in the construction of AUSM-type algorithms have assumed that the fluid behaves

as an ideal gas or a mixture thereof. This section details recent extensions of AUSbl-type

schemes that are valid for generalized state equations, which may describe single-phase liquid,

gas, or supercritical fluid behavior of a given substance. Due to the dramatic differences in

compressibility among fluids in the different states and possible large differences in the flow

speed, the "preconditioned" forms of the flux-splitting methods are utilized in the extensions.
A second thrust of this section is to provide an initial direction toward the development of

extensions suitable for solving the general multiphase flow problem for arbitrary flow speeds and

arbitrary levels of compressibility. This initial step starts with the development of an equilibrium

model for liquid-vapor phase transitions using information extracted from a generalized state

equation. The resulting equations are similar to the preconditioned, perfect-gas Euler system
in structure and in mathematical character but may admit such multiphase flow features as

cavitation zones and vapor-liquid condensation shocks.

1.1 Real Fluid State Description

1.1.1 Single Phase Formulation

The thermodynamic state of a single-phase reid fluid is defined by the retar.ions p = p(p, T) and

I1 = h(p,T). [n the present work, we utilize the Peng-Robinson equaeion of stare [1], a cubic
fllrmuhition similar t_l the Xa!.ll tli,r !ili'/titL'4 t?(lllittillti bill {t'nerally ,lll'C?i tlli)i't_ &l'Clil';I.ll, in the

liqliid phal.sP. The Penlz,-Rotiinsoll eqllati_m is e,ivl,il by

p = ztp, 7')tJR['. (l.i)
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factor, and the fluid molar density may be then be determined by

P
= _ (1.6)

The constant b is a function of critical-point fluid properties, while the function a(T) is a function

of critical point properties and the fluid temperature. The functional form for a(T) can differ

depending on the polarity of the molecule. The calculations presented herein (for carbon dioxide

(CO2) and octane) utilize expressions derived in [1] and given below:

T

a(T) = a(Tc)a(T,,u;), T, = -_+ (1.7)

a(Tc) = 0.45724 R2T_ (1.8)
Pc

a(T,,w) = (1 + _(1 - V/_)) 2 (1.9)

_; = 0.37464 + 1.54226¢z

- 0.269922" (1.10)

b = 0.07780 RTc (1.1 I)
Pc

The critical point constants Tc and Pc and the accentricity factor w are tabulated below for
CO2 and octane.

fluid ITc(K) I Pc(Pa) I w
C02 302.2 73.75e5 0.225

octane 569.4 24.96e5 0.4

The expressions presented above are strictly valid for non-polar molecules. Polar molecules,

such as water, require different forms for a and b to match experimental liquid-state density and

vapor pressure data properly.

Typical isotherms for the Peng-Robinson equation are plotted in Fig. 1.1 on a pressure-

density diagram. Clearly indicated is the vapor regime, where pressure varies nearly linearly

with density, and the liquid regime, where large pressure changes are required to induce a density

change. For a given pressure and temperature, the solution of (1.3) returns one or three values of

the compressibility factor Z, the former corresponding to the single-phase region (either liquid

or vapor) and the latter corresponding to the two-phase region, where vapor and liquid may

exist simultaneously. The corresponding densities for a pressure within the two-phase region are

_hown a._ points A-C. A amt C repre.sextt _atnrat._l vapor and liqtLid states, while B is physically

meaningless. For a partictflar temperat.re, the "allowable" two-ph_tse region is bounded b.v

the pressure values at D aml E, whirh are local extrema. The loci of these pressnre rabies

for temperatures between the triple aml crit, ical points define liquid and vapor spinodal curves,

L '2
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Figure 1.1: Pressure vs. molar density (isotherm below critical temperature).

dividingthe two-phase regionintometastablevapor,unstable,and metastableliquidregions.At

a particularpressurebetweentheliquidand vaporspinodalpoints,thesystemisinequilibrium,

withthevaporand liquidfugacitiesattainingequalvalues.Thispressureisknown azthevapor

pressurePvap and iscalculatedas a functionof temperature by iteratingon the equation

f(Zv,T,p)= f(Zt,T,p), (1.12)

where the fugacity f is given by

.4 ln(_ + (1 + v'_2)B)inpL= z - i -ln(Z - B) - + "

The spinodal pressure and density values (points D and E in Fig. 1.1) can be obtained ana-

lytically by solving the quartic equation _lr = 0, discarding two meaningless roots that occur
outside the range of validity of the Peng-Robinson equation. The spinodal pressure values bound
the actual vapor pressure, and an appropriate linear combination can be used as an initial guess
for the iteration described above.

The thermodynamic state description for the single-phase fluid is completed by the spec-

ification of enthalpy departure functions [2}, which introduce a density dependence into the
enthalpy description and thus account for latent heat effects. For the Peng-Robinson equation.
the enthalpy per unit mass of the fluid may be expressed as

Td:Z_2

- _T -- a(T) Z + (1 + v_)B,,h(:, T) = hi(T) + [RT(Z - 1) + 2v"2b ln(z + (1 --_-BJJ
(1.1-.[)

where hi(T) is the enthalpy per unit mass of an ideal gas at the same temperature (determined

from curve fits presented in McBride, et al [3]).
The physical sound speed of the fluid can be calculated from thermodynamic considerations;

a more usefitl CFD analogue is the acoustic eigenvMue, which may be obtained by determining

the eigerivalut's <)t' r,ht r .lacobian rtiatrix ,)it ,)F where F is sin Euler flUX vector closed accordiii._
,)l.." ,')14" "

to the general expressions p = p(p, T) and ph = ph(p, T/. U is the vector of conserved variables,

;tml W is the v,,ct()r of primitive variables {p. ft, v. rt'. T Ir. The choice of ph (rather than h) and

the choices of density and temperature a,s independent variables are dictated by the equilibrium

1 ;l
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1. L.2 Homogeneous Equilibriiim Two-Phase Flow Model

Th*" Pon,4-Rol')inslm ,.ilil;llllJ[l (lind similar _mesl _ives ii,i qsefiil informati(m ill the, llnst;_.l-,l_,part_

of t.he two-phase reKi_)n. ['<Jr <t_nsit.ies between the spino,tal values, it ,'an h_, _hown that the

;uxJ,l.-lr.ic _,igellvalut.:-i ;ll'-,rJrnplex. rll_';tnillg ella.if eke E,llvr -_yyltt,tll is lllJl', hyp,,rbt,lic ill r.illiO i.ind

that conventional time-marching procedures for integrating the equations are ill posed. It is also

,)f noto that the liquid spirl<_,lal pressure rilAV be negativ,_ for hi_,h rnohx:ular-weight li_uli, ls <it.

lower temperatures, implying that the simulated expansion of a liquid might produce reasonable

<tonsities. but unphysic:ll pr,-smires, in the meta_table region.

(.)ae meatl_ _)( avoiding r.aese dil-ficui_lca star_s with the introduction of a void-fraction formal-

ism for the two-phase region and the assumption of thermodynamic and kinematic equilibrium

between the phases. For art equilibrium two-phase flow, the vapor pressure pvap(T) is directly

related to the temperature through the Clausius-Clapyron equation, and the density and tem-

perature are independent variables. Given updated values for the density and temperature at a

grid point as determined from a time-integation method, the following procedure is performed:

1. Determine the vapor pressure at that temperature, either through reference to a curve-fit
or by the iterative procedure described above, and establish the saturation densities pt iT)

and p_(T) and the saturation enthalpies hi(T) and h,(T) using (1.3), (1.6) , and (1.14).

2. If the fluid density is within the saturation limits, the equilibrium equation of state for the

homogeneous mixture of liquid and vapor is given by

p = Pvap (T) (1.16)

ph(p, T) = p_(T)c_v(p, T)h_(T) + pl(T)at(p, T)ht(T) (1.17)

p - odT)
a<.(p, T) = (1.18)

pv(T) - pt(T)

al(p,T) = 1 - a. (1.19)

3. If the density is not between the saturation _alues or the temperature is greater than the

critical value, then the single phase description given by the Peng-Robinson equation will

be used to determine the pressure and enthalpy.

In this description, the saturation-state values are strict functions of temperature; density de-

pendence is introduced through the void fractions a and latent-heat effects arise through the

change in departure enthalpy between the saturation states. The thermodynamic derivatives

Po, PT, (ph)p, and (ph)r needed in the time-integration method and in the sound speed deft-

aition can be computed bv straightforward differentiation of the expressions above. These are

discontinuous at phase transition points, leading to dramatic changes in the effective "sound

speed" in the two-phase region. Figure 1.2 plots a_" as a function of molar density for both

the Peng-Robinson equation and the Peng-Robinson equation augmented by the equilibrium
two-phase flow model (1.16-1.19). The fluid is octane at a temperature of 350 K. As shown, the

equilibrium two-phase description preserves a real value for the "'sound speed", while the basic

Peng-Robinson equation results in negative values for a-'. Also shown is a theoretical result for

the sound speed in a homogeneous two-phase mixture of liquid and vapor [41:

[ tit at
- _ t.20)

p<t': p,,<t{(T) ,ottt_(T!

where ,L_t( TJ are ol)l;,tined frtllll (1.1.3) _,vitluatel[ ;U. eke sltturation statl,s pot(T). The eigenvahte

c,dculation for <i-' agrees rea.sonably well widl the theoretical estimate except near single-pha.se

l I
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Figure 1.2: a 2 vs. molar density (octane at 350 K).

/ two-phase junctures, where the latter blends smoothly with the saturation-state values and

the former exhibits a jump discontinuity. The theoretical expression for the sound speed is

numerically more robust and is used in all calculations presented herein. Both expressions

result in very small values (on the order of meters per second) for the "sound speed" near the
liquid phase / two-phase interface, meaning that a shift to a locally _supersonic" flow condition

during a phase transition is a distinct possibility.

The above formulation neglects velocity-slip effects, with the velocity actually solved for

being a phase-weighted average velocity. This system is hyperbolic in character and is similar
to the Euler system in structure but admits such multiphase features as cavitation zones and

condensation shocks. A key element is the use of density and temperature as the "working"
thermodynamic variables, particularly in contrast with the low-speed formulation described

earlier, which utilizes pressure and temperature as the "working" thermodynamic variables.

This choice is driven by the equilibrium closure for the two-phase region, in which pressure and

temperature are not independent variables.

1.2 Time-Derivative Preconditioning

The utility of time-derivative preconditioning in the solution of the real fluid system described
above lies in its ability to provide a smooth transition between nearly incompressible conditions

(such as liquid phase or low Mach number vapor or supercritical fluid phase flows) and strongly

compressible conditions (such as two-phase flows or high-speed vapor phase flows). As discussed

previously, modifications to AUSM-type discretization are required to extend their range of

applicability to flows at all speeds. These modifications depend on the choice of preconditioner,

through the use of the eigeavalues of the preconditioned system. As in the previous work, the

real fluid extension utilizes the preconditioner of Weiss and Smith [5}, which may be expressed
oc" The time-derivative term in the realas a rank-one perturbation of the Jacobian matrix EW-

fluid Euler system is replaced by

COW 0[ oEFT, OW i.2l)
--N-a-/O-W÷ ,

wh,,rl,

,Z = [l, ..., ,L'. HI r _.'2'2)

I ,J
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1.3 AUSM-type Algorithms for Real Fluids

Procedures for extending AUSM-type algorithms to operate effectively in conjunction with time-

derivative preconditioning have been proposed in [6]. These methods reduce to a standard

upwind formulation at sonic transitions, preserving the discontinuity-capturing traits of the

methods, but recover viable discretization of the incompressible flow equations as the Mach

number approaches zero. As the real-fluid state description shares a structural similarity with

the Euler system with and without preconditioning, it is anticipated that modifications to

AUSM-type algorithms to allow accurate capturing of real fluid phenomena at all speeds should

be relatively straightforward.

A key element in the construction of "all-speed" AUSM-type flux-splitting schemes is the

need for including a pressure-diffusion term to couple the pressure and velocity fields at low

Mach number. At higher speeds, the effect of the pressure-diffusion contribution is reduced

(for AUSMDV and LDFSS) or eliminated (for AUSM+). For "preconditioned" AUSM+, the

pressure-diffusion contribution to the interface flux can be written as

I Pi - Pi+l :
F'%d, AUSM+= - × (1.26)

_/,+

where _ is the "preconditioned" sound speed defined in (??) and evaluated using averages of left

(i) and right (i + 1 state information. The quantity ,_, 2AL'S.M+ is an interface Mach number
function, defined as

4- _ 4- - -'L4t/2AUSM + "_t_,a}(' IL) - ,g4(tl (A-/_) - ._bt2)(fl,,t) + .L4_(M,÷t) (1.27)

The subscript notation i/i + 1 on the vector of "'advected" variables [I, u, v, w, HI T indicates its

evaluation at either the left or the right state, depending on the sign of the complete interface

mass flux (advective contribution plus pressure diffusion contribution).[6J The "preconditioned"

version of LDFSS [7] contains a similar t(,rln:

I1 IL

t-_t ' P, - P,-_,
Ft/.:.p_t. = " " tzl_/., × _p, v +p,-_ ,: ]. (l.28)LDFSS .I/_ " "LDFSS I', * P, _I ..

H , tl.l
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Th_ fllnction C, , is s¢heme-<teperident but is order unity. The coefficient _',:"7 : is also ,)f

order unity for ga.ses, but for liquids and supercritical fluids governed by the Peng-R.obinson

,q_tation. the coefficient may become much larger than unity. This represents an unphysical

source of numerical diffusion for liquid-state calculations, one easily eliminated by redefining

the pressure-diffusion contributions as

. 1 Pi - Pi+I (1.31)
F1/_pd, AUSM+ = al/2(l_I_. - 1)_t/_AUSM+ × _ _ 'a i + ai+t

i/i+l

and

Ill¢il/_
,i Pi - Pi+z [p_ : + pi+l ], (1.32)

Fil_'pd, LDFSS = M-_'.2_"'II_LDFSS x _,pia i + Pi+lai+l

i LHJ _+-i

To enable an exact reduction to the appropriate incompressible limiting form, the interface

sound speed can be redefined as

aI/_AUSM+ = _(a; + a_+l) (1.33)

and as

= t/p'a_ + P'+'a'_+t (1.34)
#

ai/_LDFSS 7 77 7 _--_+t

All other aspects of the flux-splitting are the same as outlined in Sections ?? and .9.,: and Refs.
[61 and [71. It should be noted that the modifications do affect the response of the schemes for

perfect-gas calculations. For both schemes, the magnitude of the pressure diffusion contribution

is lowered by a factor of li'_, while for AUSM +, the ability of the scheme to capture a stationary

shock wave with no intermediate point is disrupted by the definition in (1.33). Neither of these

differences affects the performance of :he schemes s_rongly.

1.4 Higher Order Extension

To exu,nd the methods outlined above t,I _twond-,)rder _patial accttracy, we utilize slope-limited

Frormn interpolations of the primitiw.'-variable vector [p, tl. v, w, TI r to the i + 1/2 interface•

As the ._tate description i_ quite comph,x and e×pensive to calculate, some simplifications are

muployl,tl. First, otlly the pressure alid enthalpy are determined from the interpolated density

I 7
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in these, the notation L, R represents the use of interpolated values, whereas the notation i, i + 1

represents the use of nodal values. Results shown later utilize both the minmod and Van Leer

limiters ia defining the interpolated data.

1.5 Applications

The techniques outlined in earlier sections have been incorporated into an implicit Navier-

Stokes solver baaed on Gauss-Seidel relaxation [81, recently extended to multiblock domains. To

minimize modifications to the code and to facilitate possible changes in the state description,

the thermodynamic derivatives pp, P'r, (ph)p and (ph)r are computed and stored as arrays,
then used as needed in the construction of the flux Jacobian matrices. Viscosity and thermal

conductivity data for the single-phase regions are taken from [9] and [10]. For the two-phase

region, it is assumed that the mixture viscosity and thermal conductivity can be expressed as

void-fraction weighted averages of the saturation-state values. A quasi- 1-D Euler solver has
also been written to test basic attributes of the methods. The test cases below illustrate some

general features of the schemes.

1.5.1 "Faucet" Problem

The "faucet" problem [11] is a classic test case for two-fluid codes. In the present context, the

fluid is taken to be liquid octane in kinematic and thermodynamic equilibrium with its vapor

at a temperature of 350 K and a vapor pressure of 2.061 Pa. The calculation encompasses

a one-dimensional domain of 12 m, with the inflow conditions specified by the temperature,

the void fraction of octane vapor (taken as 0.2), and the velocity of the stream (taken as 10

m/s). The solution is forced by a gravity vector aligned in the direction of the flow, leading to
acceleration of the fluid _md an increase in the vapor-phase void fraction as the density decreases.

A steady solution is obtained over time, with the transient response being the propagation of

a discontinuous void w-ave downstream. With the present closure for the two-phase region, the

problem is hyperbolic in the flow direction, as the effective "sound speed" is much smaller than

the I0 m/._ velocity..ks such, all variables are fixed at the inflow and all are extrapolated at

the outflow. Figure 13 presents calculation results for the void wave profile at a particular
in._tam',, i_, time with ,ut amtlytic solution for the two-pha.se, separated flow problem. A simple

Euh'r explicit iau,gratioa method is used. Only results from AUSM+ are shown, as both schemes

r_,vert, tt, the .smm' _q_wmd-bia.sed discretizati,m fl_r this problem. The first-order upwind scheme,

_g.rt'_ttmg ;tt ;t t_'FL _,t' LA},_'_tpt,ures the wJkl dis¢'_mtimtitv rather sh_trply hut diffuses the peak
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Figure 1.3: Octane vapor void fraction vs. x and time.

value. The second-order minmod and Van Leer - limited extensions require a much smaller

CFL of 0.1 to maintain a reasonable degree of monotonicity in the void fraction profile. The

Van Leer - limited case provides a slight improvement in the resolution of the peak value but

due to the reduction in CFL number, the overall results are only marginally better than the

first-order result. The minmod-limited result is slightly worse than the first-order result, again

a consequence of the lower CFL number. It is likely that the second-order results would improve

with the use of a more appropriate integration scheme.

1.5.2 Quasi - 1-D Liquid Expansion

The next test case considers the flow of initially liquid octane through a converging-diverging

nozzle defined by the area relationship

A(z) : I +4(x - 1/2)2,0 < z < 1 (1.37)

The initial conditions are p = 4 x 10T Pa, T -- 340 K, and u = 10 re�s, with the nozzle exit

pressure set to 0.7 times the initial pressure level. This problem mimics a cavitating flow in

that the pressure drop experienced as the flow accelerates through the nozzle throat is steep

enough to force a transition to the vapor phase. The fixed exit pressure forces a recompression

back to the liquid state, simulating the collapse of a cavitation region. Figure 1.4 presents

pressure distributions for three state equations: the Peng-Robinson (P-R) state description

with the equilibrium two-phase flow model, an ideal gas equation of state, and the unmodified

Peng-Robinson state description. As shown, the pressure level in the throat lowers to unphysical

levels for the unmodified Peng-Robinson equation, representing a progression into the metastable

liquid region. The equation system remains hyperbolic, however, as the density does not drop

below the liquid spinodal value. In contrast, the pressure level for the Peng-Robinson equation

with the equilibrium two-phase flow model lowers to the vapor pressure of octane. This results

in the generation of a vapor phase and a decrease in the fluid density (Fig. 1.5). As expected,

the liquid octane density varies little in the convergent section of the nozzle. The shock-like

r,'compre_ion ,>f the two-phaae ttuid hack t,} r.hc [i(lmd state is captured well by both the
AUSM+ and LDFSS discretizations. Some effects of the higher-order extensions can be seen in

the p,)siti(miz,g <)f the c_m_b,nsation shock, and little (li_'['etem'e I'JPtween the AUSM+ and LDFSS

l)redictions is (>l)serv+:(]. Pr('ssure <listributi(ms from a p(,rfi,ct-g&s (:h)sure are also sit<)wn in Fig,.

I 9
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Figure 1.4: Pressure vs. x: expanding liquid octane.

1.4, with the comparisons highlighting the expected differences in the flow response due to the
state description. The shock wave is captured monotonically by all methods.
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Figure 1.5: Density and vapor void fraction vs. ×: expanding liquid octane.

1.5.3 Liquid CO._ Expansion Through a Sharp Orifice Nozzle

Figure [.6 illustrates axial velocity and density contours in the interior of a reservoir / capill_y

nozzle system for spra._ing liquid CO..,. A tw,)-bk)ck grid is utilized, with the reservoir block

containing 65xt53 points and the capillary nozzle block containing 97x97 points. The flow is
a.xisymmetric, and the reservoir total condition._ _re p,, = t0 x ll) _ Pa and To = 290K. These

conditions place the incoming fluid m the liquid state. The inflow boundary conditions fix the

[ l()
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Figure 1.6: Velocity and density contours: liquid CO2 expansion (AUSM+ upwinding),

No discontinuity in the bulk fluid properties is evidenced, however, as the transition into the

two-phase region takes place very near the critical point of the fluid. Calculations without the

equilibrium two-phase flow model were found _o be unstable, as the rapid expansion drives the

fluid density in the corner region below the liquid spinodal value. The pressure values remain
reasonable, in contrast to the octane expansion described above, but the acoustic speeds become

complex. Only AUSM+ solutions are shown; LDFSS solutions are very similar. The effects of

the minmod-limited second-order extension are confined to the orifice region, where the second-

order calculation results in more crisp predictions of the supersonic flow response. Features

of note include regular oblique-shock and Mach wave reflections as well as a small pocket of

reversed flow downstream of the corner. The displacement effect of this structure forms an area

minimum, allowing the transition to supersonic flow.

1.5.4 Liquid Octane Expansion Through a Sharp Orifice Nozzle

The fourth test case involves the acceleration of liquid octane through a capillary tube. Devices

similar to this axe used in fuel injection systems. Again, a two-bLock grid is considered, with

reservoir containing 65x153 nodes and the capillary tube containing 97x97 nodes. This problem
is also axisymmetric, and the reservoir conditions are po = I0× 106 Pa and To = 400K. Octane is

liquid under these conditions. The closeup in Fig. 1.7 plots density contours in the vicinity of the
reservoir / tube juncture. The rapid pressure drop experienced as the fluid accelerates around

the sharp corner cavitates the fluid, initially prt)<ht('ing a b)_bble of nearly pure vapor. The wake

()f the bttbble is _t t.wo-ph,tsc [nixt_u+_ (_f thti<l..h,um:t(,tizc_l by aa im'rea_ing liquid coatettt a_

the flow proceeds downstream. The two-phi_, / sit_ghr-ph_L,+e interface is sharply captured near

the corner, with the _hape of the b_£bbh, (t+tn,rmim'd I}v +t balatt(:e between the pressure jttmp

i+.[Itl "'ttt|tlttrt'W;tl '+ :++tlrf2+t't' L('{_Si()II r<,._ttltit_g ft'_mt the ttpwimltttg. DiffPr_,tx+:es between first-order

t tl
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Figure 1.7: Density contours: octane cavitation.

AUSM+ and LDFSS solutions are minimal. These solutions are extremely difficult to obtain.

With the current methods, the iteration must be nearly time-accurate with global time-stepping

in order to capture stable bubble growth. Local time steps result in the intermittent appearance

of octane vapor bubbles, which grow, propagate, and collapse in a highly unsteady manner. With
the present thermodynamic model, the collapse of a vapor bubble results in higher temperatures,

raising the vapor pressure and promoting more bubble growth. While many of these trends are

consistent with the physics of cavitation bubble formation [4], the robustness and efficiency of

the current procedures in capturing steady bubble behavior is a concern. The sazne is true for

the higher-order extensions, which are even more susceptible to transient bubble growth. As a
result, no higher-order solutions for this problem are yet available. Cavitation calculations using

the Sanchez-Lacombe [12] equation of state, a lattice-fluid formulation valid for high molecular

weight liquids, are underway for octane and water; these indicate somewhat better numerical
behavior.

1.6 Concluding Remarks

Simple modifications for extending AUSM+ and LDFSS low-diffusion upwind schemes schemes

toward the calculation of real fluids at all speeds and at all states of compressibility have

been outlined in this section. The real fluid state description is based on the Peng-Robinson

equation, enhanced by an equilibrium model for liquid-vapor phase transitions. Results indicate

that the modifications proposed herein are effective in simulating incompressible liquid and

compressible vapor responses as well as multiph_e flow phenomena, such the appearance of

cavitation bubbles and vapor-liquid (:omlens_ttion shocks..4, point of concern is the robustness

of the currm_t primo,(lures in capr, uring sr,;tti(marv c,tvit;t_iL)[: [)u[)l)[es - modifi(:atious to improve
this behavior are underway. This work provides a starting point for a more comprehensive

inw:stig:_tion of npwiml _lis('retization techniqm,s t\u' gent, ral m>nequilibrium multipha.se flows -

('lE(Jrt.'/ ill thi._ {[i[(-'v_:il,ii AtI' .llsl) rllt(l{'l'W;tv

t t2
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